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ORD Facility in
Research Triangle Park, NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
•562 peer-reviewed journal articles in 2018

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemical 
signatures in pooled human blood samples, many 
appear to be exogenous

• A tapestry of laws covers the chemicals people 
are exposed to in the United States (Breyer, 2009)

• Chemical safety testing is primarily for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)
• Different levels depending on category

November 29, 2014
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• Most other chemicals, ranging from industrial waste 
to dyes to packing materials, are covered by the Toxic 
Substances Control Act (TSCA)

• Thousands of chemicals on the market were 
“grandfathered” in without assessment 
Judson et al. (2009), Egeghy et al. (2012), Wetmore et al. (2015)

“Tens of thousands of chemicals are listed with the 
Environmental Protection Agency (EPA) for commercial 
use in the United States, with an average of 600 new 

chemicals listed each year.” 
U.S. Government Accountability Office

March, 2013

Chemical Regulation in the United States
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Three Components for Chemical Risk

Exposure

Hazard

Chemical Risk 

NRC (1983)

The National Academy of Sciences, Engineering and Medicine (1983) 
outlined three components for determining chemical risk.

Dose-Response
(Toxicokinetics 

/Toxicodynamics)
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• TSCA was updated in June, 2016 to allow more rapid 
evaluation of chemicals (Frank R. Lautenberg 
Chemical Safety for the 21st Century Act)

• New approach methodologies (NAMs) are being 
considered to inform prioritization of chemicals for 
testing and evaluation (Kavlock et al., 2018)

• EPA has released a “A Working Approach for 
Identifying Potential Candidate Chemicals for 
Prioritization” (September, 2018)

Toxic Substances 
Control Act (TSCA)

Schmidt, C. W. (2016). TSCA 2.0: A new era in 
chemical risk management”, Environmental 
Health Perspectives, A182-A186.
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New Approach Methodologies (NAMs)

• There are roughly 10,000 TSCA-relevant 
chemicals in commerce
• Traditional methods are too 

resource-intensive to address all of  
these

• NAMs include:
• High throughput screening (ToxCast)
• High throughput exposure estimates 

(ExpoCast)
• High throughput toxicokinetics 

(HTTK)

• TSCA Proof of concept: Examine ~200 chemicals with ToxCast, ExpoCast and HTTK
• HTTK was rate limiter on number of chemicals
• “A Proof-of-Concept Case Study Integrating Publicly Available Information to Screen Candidates for 

Chemical Prioritization under TSCA”
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Replacing Animal Testing with NAMs

• Administrator of the EPA: “To aggressively pursue a 
reduction in animal testing, I am directing leadership and 
staff in the Office of Chemical Safety and Pollution 
Prevention and the Office of Research and Development 
[ORD] to prioritize … the reduction of animal testing while 
ensuring protection of human health and the 
environment.”

• “These new approach methods (NAMs), include any 
technologies, methodologies, approaches or combinations 
thereof that can be used to provide information on 
chemical hazard and potential human exposure that can 
avoid or significantly reduce the use of testing on animals”
• NAMs for filling information gaps for decision-making
• integrating data steams into chemical risk assessment
• making the information publicly available
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• The U.S. National Research Council (1983) identified 
chemical risk as a function of both inherent hazard 
and exposure

• Therefore, high throughput risk prioritization needs:
1. High throughput hazard characterization                            

(Dix et al., 2007, Collins et al., 2008)
2. High throughput exposure forecasts                       

(Wambaugh et al., 2013, 2014)
3. High throughput toxicokinetics (i.e., dose-

response relationship) linking hazard and 
exposure                                                          
(Wetmore et al., 2012, 2015)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = Hazard x Exposure
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High-Throughput Risk Prioritization

Exposure

Hazard

High throughput screening 
(HTS) for in vitro bioactivity 
potentially allows 
characterization of thousands 
of chemicals for which no 
other testing has occurred

NRC (2007)

To perform high throughput risk prioritization, we need all three components

Dose-Response
(Toxicokinetics 

/Toxicodynamics)

High-Throughput
Risk 

Prioritization
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High-throughput Screening

Kaewkhaw et al. (2016)

Hertzberg and Pope (2000):
• “New technologies in high-throughput screening have significantly increased throughput and reduced 

assay volumes…”

• “…new fluorescence 
methods, detection 
platforms and liquid-
handling technologies.”

• Typically assess many 
chemicals with a signal 
readout (e.g., green 
fluorescent protein).

Positive
Control

Titration of 
Potential Hits
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Concentration

Re
sp

on
se

In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty

High-Throughput Bioactivity 
Screening Projects

 We attempt to estimate points of departure in vitro using 
high throughput screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran 
>1100 additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format (identify 
50% activity concentration – AC50 – and efficacy if data 
described by a Hill function, Filer et al., 2016)

 All data are public: http://comptox.epa.gov/dashboard/
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The Margin Between Exposure and Hazard

Aylward and Hays (2011) 

The five chemicals (as of 2011) with plasma biomonitoring AND ToxCast data… what do we do about the other 1000’s?

Estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Bio-monitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+

Range of bioactive concentrations 
across ToxCast assays
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Most Chemicals Lack Data on Exposure and 
Toxicokinetics

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

“Translation of high-throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 

Recent advances in high-throughput 
toxicity assessment, notably the ToxCast 
and Tox21 programs… and in high-

throughput computational exposure 
assessment [ExpoCast] have enabled 
first-tier risk-based rankings of

chemicals on the basis of margins 
of exposure” -

NASEM (2017)

National Academies 
of Sciences, 
Engineering, and 
Medicine (NASEM)

In order to perform risk-based ranking we need data on hazard, 
toxicokinetics, and exposure… 
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(e.g., Wetmore et al., 2015)

Exposure intake rates  can 
be inferred from 
biomarkers
(e.g., Ring et al., 2018)
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Ring et al. (2017)

Chemical Prioritization NAMs
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In Vitro - In Vivo Extrapolation (IVIVE)

IVIVE is the use of in vitro experimental data to predict phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological 

target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, 

reversible/ irreversible effeccts

• Both contribute to in vivo effect prediction

NRC (1998)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

... .
..
. .. . .1 2

CLmetab

CLGFR

Gut Lumen
Primary

Compartment

kabs

httk
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Building Confidence in TK Models

Predicted Concentrations
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Specific 
Model

Cohen Hubal et al. (2018)

• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data
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Building Confidence in TK Models

Predicted Concentrations
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• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data
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Building Confidence in TK Models

Predicted Concentrations
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• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
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Building Confidence in TK Models

• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can consider using model to extrapolate to other situations 

(chemicals without in vivo data) Predicted Concentrations
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Building Confidence in TK Models

Predicted Concentrations
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• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Evaluation Example

• The HTTK model estimates chemical 
clearance from the body by two 
processes:

• hepatic metabolism (liver)
• passive glomerular filtration 

(kidney)

• This appears to work better for 
pharmaceuticals than other 
chemicals:

• ToxCast chemicals are 
overestimated

• Non-pharmaceuticals may be 
subject to extrahepatic metabolism 
and/or active transport

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)
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Toxicokinetic Triage:  When Does TK IVIVE 
Work?

 Through comparison to in vivo data, a cross-
validated (random forest) predictor of success or 
failure of HTTK has been constructed

 All chemicals can be placed into one of seven 
confidence categories
• Added categories for chemicals that do not 

reach steady-state or for which plasma binding 
assay fails

 Plurality of chemicals end up in the “on the order” 
bin (within a factor of 3.2x) which is consistent 
with Wang (2010)

Wambaugh et al. (2015)
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(e.g., Wetmore et al., 2015)

Exposure intake rates  can 
be inferred from 
biomarkers
(e.g., Ring et al., 2018)

10

10-3

10-7

Es
tim

at
ed

 E
qu

iv
al

en
t D

os
e 

or
 P

re
di

ct
ed

 E
xp

os
ur

e 
(m

g/
kg

 B
W

/d
ay

)

Ring et al. (2017)

Chemical Prioritization NAMs
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Life-stage and Demographic Variation in 
Exposure

• Wambaugh et al. (2014) made steady-
state inferences of exposure rate 
(mg/kg/day) from NHANES data for 
various demographic groups

Change in Exposure 
Relative to Total Population

Change in Exposure (mg/kg bodyweight/day)

Ring et al. (2017)

N
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Life-stage and Demographic Variation in TK

• Ring et al. (2017) made demographic-
specific predictions of change in plasma 
concentrations for a 1 mg/kg bw/day 
exposure

Change in Toxicokinetics (µM/unit exposure)

Change in Toxicokinetics 
Relative to Total Population

Ring et al. (2017)

N
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Life-stage and Demographic Variation in Risk 
Priority

• Can calculate 
margin between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population

N
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N
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-reviewed 

tools and data for high throughput 
toxicokinetics (httk)

• Available publicly for free statistical software R
• Allows in vitro-in vivo extrapolation (IVIVE) and 

physiologically-based toxicokinetics (PBTK)
• Human-specific data for 944 chemicals and rat-

specific data for 171 chemicals 
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Risk = Hazard x Exposure

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput screening (Dix et al., 
2006, Collins et al., 2008) + in vitro-in 
vivo extrapolation (IVIVE, Wetmore et 
al., 2012, 2015) can predict a dose 
(mg/kg bw/day) that might be 
adverse

Toxicokinetics

NRC (1983)
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Risk = Hazard x Exposure

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput models exist to 
make predictions of exposure via 

specific, important pathways such 
as residential product use and diet

Need methods to forecast exposure for 
thousands of chemicals 
(Wetmore et al., 2015)

Toxicokinetics

NRC (1983)

High throughput screening (Dix et al., 
2006, Collins et al., 2008) + in vitro-in 
vivo extrapolation (IVIVE, Wetmore et 
al., 2012, 2015) can predict a dose 
(mg/kg bw/day) that might be 
adverse
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Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Ecological
Flora and Fauna

Residential Use
(e.g. ,flooring)

TARGET

MEDIA

Environmental 
Release

Other Industry

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(e.g., surface cleaner)

Human

Figure from Kristin Isaacs

Understanding Exposure is a Systems 
Problem
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Exposure event is often unobservable

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Near-Field
Direct

Near-Field 
Indirect Dietary Far-Field

Residential Use
(e.g. ,flooring)

TARGET

MEDIA

EXPOSURE 
(MEDIA + TARGET)

Ecological

Environmental 
Release

Other Industry

Occupational

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(e.g., surface cleaner)

Ecological
Flora and FaunaHuman

Figure from Kristin Isaacs

• Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources significant (Wallace, et al., 1987)
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NAMs for Exposure Science
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Makes Use of

Exposure NAM Class Description Traditional Approach M
ea
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re
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en
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To
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M
od
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s

D
es

cr
ip

to
rs
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n

M
ac

hi
ne

 
Le

ar
ni

ng

Measurements New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data to 
generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information

• • - •

Chemical Descriptors Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical analyses by 
humans

- •

Evaluation Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data on a 
per chemical basis

• • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

New Approach Methodologies for Exposure Science

Wambaugh et al. (2019)
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What Do We Know About Exposure?
Biomonitoring Data

• Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey 
(NHANES) provides an important tool for monitoring public health

• Large, ongoing CDC survey of US population: demographic, body measures, medical exam, 
biomonitoring (health and exposure), …

• Designed to be representative of US population according to census data

• Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

• Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine
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“Now it would be very remarkable if any system existing in the real world could be exactly represented by 
any simple model. However, cunningly chosen parsimonious models often do provide remarkably useful 
approximations… The only question of interest is ‘Is the model illuminating and useful?’” George Box

• Human chemical exposures can be coarsely grouped into “near field” sources that are close to the 
exposed individual (consumer or occupational exposures) ‘far-field’ scenarios wherein individuals are 
exposed to chemicals that were released or used far away (ambient exposure) (Arnot et al., 2006). 

• A model captures knowledge and a hypothesis of how the world works (MacLeod et al., 2010)

• EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within 
government, industry, academia, and the general public with assessing exposure
• Includes many, many models
https://www.epa.gov/expobox

What Do We Know About Exposure?
Exposure Models
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Models to Predict Exposure

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Near-Field
Direct

Near-Field 
Indirect Dietary Far-Field

Residential Use
(e.g. ,flooring)

TARGET

MEDIA

EXPOSURE 
(MEDIA + TARGET)

Ecological

Environmental 
Release

Other Industry

Occupational

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(e.g., surface cleaner)

Predictive 
Modeling

We can try to predict exposure by describing the process leading to exposure

Ecological
Flora and FaunaHuman

Figure from Kristin Isaacs



39 of 67 Office of Research and Development

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Near-Field
Direct

Near-Field 
Indirect Dietary Far-Field

Residential Use
(e.g. ,flooring)

TARGET

MEDIA

EXPOSURE 
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Biomarkers 
of Exposure

Media Samples
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Environmental 
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Sampling

Other Industry
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Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(e.g., surface cleaner)

We can also infer 
exposure from monitoring data

MONITORING DATA

Ecological
Flora and Fauna

Chemical Manufacturing and Processing

Human

Figure from Kristin Isaacs

Monitoring Data



40 of 67 Office of Research and Development

Indoor Air, Dust, Surfaces
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Direct Use
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Ecological
Flora and Fauna

Chemical Manufacturing and Processing

Human

Figure from Kristin Isaacs

Models to Infer Exposure
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Indoor Air, Dust, Surfaces
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Direct Use
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Ecological
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Chemical Manufacturing and Processing

Human

Predictive 
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Figure from Kristin Isaacs

Evaluating Models with Monitoring Data
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Evaluation NAMs:  The SEEM Framework

• We use Bayesian methods to incorporate multiple models into consensus predictions for 
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)
(Wambaugh et al., 2013, 2014; Ring et al., 2018)

Hurricane path 
prediction is an 

example of 
integrating 

multiple models

Estimate 
Uncertainty

Space of 
Chemicals

Chemicals 
with 

Monitoring 
Data

In
fe

rr
ed

 In
ta

ke
 R

at
e

Model 1
Model 2…

Calibrate 
models

Apply calibration and estimated uncertainty to 
other chemicals

Evaluate Model Performance
and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:

ε ~ N(0, σ2)
Residual error, 
unexplained by 
the regression 

modelIn
fe

rr
ed

 E
xp

os
ur

e

Weighted HTE Model Predictions

SEEM is a Linear Regression
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:

In
fe

rr
ed

 E
xp

os
ur

e

Weighted HTE Model Predictions

Not all models have predictions 
for all chemicals

• We can run SHEDS-HT 
(Isaacs et al., 2014) for 
~2500 chemicals

What do we do for the rest?
• Assign the average value?
• Zero?

SEEM is a Linear Regression
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R2 ≈ 0.5

SEEM Analysis of NHANES Data

R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume

Wambaugh et al. (2014)
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Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume

Heuristics of Exposure
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Correlation is Not Causation

• Wambaugh et al. (2014) found that “pesticide inerts” 
had higher than average levels in biomonitoring data, 
while “pesticide actives” had lower than average

• In World War II, there Royal Air Force (UK) wanted to 
armor planes against anti-aircraft fire
• Initial proposal was to place armor wherever 

bullet holes were most common
• Mathematician Abraham Wald pointed out that 

they were looking at the planes that had returned
• See Drum, Kevin (2010) “The Counterintuitive 

World”

• Pesticide inerts have many other uses, but there are 
more stringent reporting requirements for pesticides
• Exposure is occuring by other pathways
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The Six Degrees of Kevin Bacon
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Kevin Bacon

Toxicokinetics

1984

1995

1992

1978
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Kevin Bacon

Toxicokinetics

1984
1990
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Michael B. Jordan

Toxicokinetics
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Connectedness to Michael B. Jordan

Frances McDormand 
Best Actress Winner 2018

Creed
Stallone & Jordan

Expendables 
Willis & 

Sylvester Stallone

Hail Caesar
McDormand &

Channing Tatum

GI Joe: Retaliation
Tatum & Bruce Willis
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Connectedness to Michael B. Jordan

Marlon Brando
Best Actor 1954 and 1972
Died 2004

Black Panther
Boseman & JordanAvengers: 

Infinity War 
Paltrow & 
Chadwick 
Boseman

Superman
with Gene Hackman

The Royal Tenenbaums
Hackman & Gwyneth Paltrow
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Small World Networks
Watts and Strogatz (1998) Collins and Chow (1998)

Travers and 
Milgram (1977):

296 arbitrary 
individuals in 
Nebraska and 
Boston were 

asked to give a 
letter to an 

acquaintance 
most likely to 
help it reach a 

target person in 
Massachusetts. 
64 reached the 
target person, 

average number 
of intermediaries 

was 5.2
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Complex is Not the Same as Random

Watts and Strogatz (1998)
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“In particular, the 
assumption that 100% 
of [quantity emitted, 

applied, or ingested] is 
being applied to each 

individual use scenario 
is a very conservative 
assumption for many 

compound / use 
scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Chemical Use Identifies Relevant Pathways

>2000 chemicals with Material Safety Data Sheets 
(MSDS) in CPCPdb (Goldsmith et al., 2014)

10
6 

N
HA

N
ES

 C
he

m
ic

al
s

Some pathways have 
much higher average 

exposures!

Near-Field Dietary Far-Field EcologicalOccupational

Near field sources have been known to be important at least since 1987 –
see Wallace, et al.
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How Can we Know Chemical Use?
Chemical Property NAMs

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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CPCPdb: Material Safety Data Sheets

XXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXX

XXXXXXXXXX
XXXXXXXXXX

X
X
X

Goldsmith et al. (2014):
• ~20,000 

product-
specific 
Material 
Safety Data 
Sheets (MSDS) 
curated

• ~2,400 
chemicals

Product-specific 
uses determined 
using web spider 
to click through 
categories (e.g., 
home goods, bath 
soaps, baby) to 
find each product
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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Chemical Structure and 
Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
agent

viscosity 
controlling 

agent
vinylUV 

absorber
ubiquitoussurfactant

pre-
servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Exposure NAM: Machine Learning to Fill Data Gaps
EXAMPLE: Predicting Function Based on Structure

Machine Learning Based Classification Models
(Random Forest, Breiman, 2001)

Prediction of
Of Potential 

Alternatives from 
Chemical Libraries

Phillips et al. (2017)

Use Database (FUSE)
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• Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been 
developed so far that can run that fast

• ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past 
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring 
concentration for toxicokinetics or exposure requires chemical-specific methods…

• ExpoCast: Ring et al. made in silico predictions for ~480,000 chemicals from structure, but based on 
NHANES monitoring for ~120 chemicals
• Quantitative non-targeted analysis (NTA) may eventually provide greater evaluation data to 

reduce uncertainty

• HTTK: In vitro data on 944 chemicals collected for humans, starting with Rotroff et al. (2010)
• Work continues to develop in silico tools, e.g. Sipes et al. (2016)

What is “High Throughput”?

Our work is not done…
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Summary

 A tapestry of laws covers the chemicals people are exposed to 
in the United States (Breyer, 2009)

 Many chemicals, ranging from industrial waste to dyes to 
packing materials, are covered by the recently updated Toxic 
Substances Control Act (TSCA) and administered by the EPA

 New approach methodologies (NAMs) are being developed to 
prioritize these existing and new chemicals for testing

 All data are being made public:
• The CompTox Chemicals Dashboard (A search engine for 

chemicals) http://comptox.epa.gov/
• R package “httk”: https://CRAN.R-project.org/package=httk

The views expressed in this presentation are those of the authors 
and do not necessarily reflect the views or policies of the U.S. EPA

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro

converted to dose 
by  HTTK

Lower
Risk

Medium 
Risk

Higher
Risk

http://comptox.epa.gov/
https://cran.r-project.org/package=httk
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